Structural, magnetic and transport properties of $Fe_2Cr_{0.5}Ti_{0.5}X$ (X = Al, Ga, In) Heusler alloys

V. Khovaylo¹, T. Inerbaev², A. Bogach³, A. Abuova², M. Seredina¹, D. Karpenkov¹, V. Golubeva¹, R. Chatterjee^{1,4}

 ¹ National University of Science and Technology MISIS, Moscow, Russia
 ² L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
 ³ Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
 ⁴ Indian Institute of Technology Delhi, New-Delhi, India khovaylo@misis.ru

Half-metallic materials demonstrating 100% spin polarization at the Fermi level are the key ingredient for spintronic applications. Theoretical calculations [1] have pointed out that X₂YZ Heusler alloys obeying the Slater-Pauling rule, which states that the number of valence electrons N_V determines the total magnetic moment M_t as $M_t = N_V - 24$, can demonstrate well-defined half-metallic properties. This approach implies that the Heusler compounds with $N_V = 24$ should have zero net magnetic moment. Considering Fe₂-based Heusler alloys, this rule is valid for Fe₂VAl, which is a well-known thermoelectic materials. In order to extend this approach for another representatives of the Fe₂-based Heusler alloys, we performed theoretical and experimental study of Fe₂Cr_{0.5}Ti_{0.5}X (X = Al, Ga, In) alloys, which satisfy the $N_V = 24$ condition.

Results of our first-principles calculations indicated that, indeed, the electronic structure of the Fe₂Cr_{0.5}Ti_{0.5}X Heusler alloys resembles the electronic structure of a gapless semiconductor with zero net magnetic moment. Experimentally studied magnetic properties of these alloys confirmed the absence of a long-range magnetic ordering down to 4.2 K, which is in a sharp contrast with the well-defined ferromagnetism of the parent Fe₂CrX compounds, whose Curie temperature T_c exceeds 300 K [2]. However, a deviation of the inverse magnetic susceptibility curve of the studied Fe₂Cr_{0.5}Ti_{0.5}X alloys from the Curie-Weiss law suggests that short-range magnetic correlations make a significant contribution to magnetic properties of these compounds. Hence, it can be concluded that the degree of the L2₁ superstructural ordering can strongly modify magnetic properties of the Fe₂Cr_{0.5}Ti_{0.5}X Heusler alloys.

This work was supported by the Priority-2030 program of NUST MISIS (project No. K2-2022-022).

[1] I. Galanakis, *Theory of Heusler and Full-Heusler Compounds*. In: C. Felser, A. Hirohata (Eds.) Heusler Alloys: Properties, Growth, Applications (Springer, 2016), p. 3
[2] R.Y. Umetsu, N. Morimoto, M. Nagasako, R. Kainuma, T. Kanomata, *J. Alloys Comp.*, 528 (2012) 34-39.